To extract a quality report from the csv file containing the diagnostics matrix.
Usage
extract_QR(
file,
x,
matrix_output_file,
sep = ";",
dec = ",",
thresholds = getOption("jdc_thresholds")
)Arguments
- file
the csv file containing the diagnostics matrix. This argument supersedes the argument
matrix_output_file.- x
data.frame containing the diagnostics matrix.
- matrix_output_file
the csv file containing the diagnostics matrix.
- sep
the separator used in the csv file (by default,
sep = ";")- dec
the decimal separator used in the csv file (by default,
dec = ",")- thresholds
listof numerical vectors. Thresholds applied to the various tests in order to classify into modalitiesGood,Uncertain,BadandSevere. By default, the value of the"jdc_threshold"option is used. You can call theget_thresholdsfunction to see what thethresholdsobject should look like.
Value
a QR_matrix object.
Details
This function generates a quality report from a csv file containing
diagnostics (usually from the file demetra_m.csv).
The demetra_m.csv file can be generated by launching the cruncher
(functions cruncher or
cruncher_and_param) with the default export
parameters, having used the default option csv_layout = "vtable" to
format the output tables of the functions
cruncher_and_param and
create_param_file when creating the parameters
file.
This function returns a QR_matrix object, which is a list of 3
objects:
modalities, adata.framecontaining several indicators and their categorical quality (Good, Uncertain, Bad, Severe).values, adata.framecontaining the same indicators and the values that lead to their quality category (i.e.: p-values, statistics, etc.) as well as additional variables that don't have a modality/quality (series frequency and arima model).score_formulathat will store the formula used to calculate the score (when relevant). Its initial value isNULL.
If x is supplied, the file and matrix_output_file
arguments are ignored. The file argument also designates the path to
the file containing the diagnostic matrix (which can be imported into R in
parallel and used with the x argument).
See also
Other QR_matrix functions:
export_xlsx(),
export_xlsx.QR_matrix(),
export_xlsx.mQR_matrix(),
rbind.QR_matrix(),
sort(),
weighted_score()
Examples
# Path of matrix demetra_m
demetra_path <- file.path(
system.file("extdata", package = "JDCruncheR"),
"WS/ws_ipi/Output/SAProcessing-1",
"demetra_m.csv"
)
# Extract the quality report from the demetra_m file
QR <- extract_QR(file = demetra_path)
#> Multiple column found for extraction of q statistic
#> First column selected
#> Multiple column found for extraction of q-m2 statistic
#> First column selected
#> Multiple column found for extraction of mean
#> Last column selected
print(QR)
#> The quality report matrix has 13 observations
#> There are 18 indicators in the modalities matrix and 20 indicators in the values matrix
#>
#> The quality report matrix contains the following variables:
#> series residuals_homoskedasticity residuals_skewness residuals_kurtosis residuals_normality residuals_independency qs_residual_sa_on_sa f_residual_sa_on_sa qs_residual_sa_on_i f_residual_sa_on_i f_residual_td_on_sa f_residual_td_on_i oos_mean oos_mse q q_m2 m7 pct_outliers frequency arima_model
#>
#> The variables exclusively found in the values matrix are:
#> frequency arima_model
#>
#> No score was calculated
# Extract the modalities matrix:
QR[["modalities"]]
#> series residuals_homoskedasticity residuals_skewness residuals_kurtosis
#> 1 RF0610 Uncertain Good Good
#> 2 RF0620 Good Bad Bad
#> 3 RF0811 Uncertain Bad Bad
#> 4 RF0812 Bad Good Uncertain
#> 5 RF0893 Good Good Good
#> 6 RF0899 Good Good Good
#> 7 RF1011 Good Good Good
#> 8 RF1012 Good Good Good
#> 9 RF1013 Bad Bad Bad
#> 10 RF1020 Bad Good Uncertain
#> 11 RF1031 Bad Uncertain Bad
#> 12 RF1032 Good Good Good
#> 13 RF1039 Bad Uncertain Bad
#> residuals_normality residuals_independency qs_residual_sa_on_sa
#> 1 Good Good Good
#> 2 Bad Good Good
#> 3 Bad Bad Good
#> 4 Good Bad Good
#> 5 Good Uncertain Good
#> 6 Good Bad Good
#> 7 Good Bad Severe
#> 8 Good Bad Severe
#> 9 Bad Bad Bad
#> 10 Uncertain Bad Severe
#> 11 Bad Bad Bad
#> 12 Good Bad Good
#> 13 Bad Bad Severe
#> f_residual_sa_on_sa qs_residual_sa_on_i f_residual_sa_on_i
#> 1 Good Good Good
#> 2 Good Good Good
#> 3 Good Good Good
#> 4 Good Good Good
#> 5 Good Good Good
#> 6 Good Good Good
#> 7 Good Severe Good
#> 8 Good Severe Good
#> 9 Good Bad Good
#> 10 Good Bad Good
#> 11 Good Uncertain Good
#> 12 Good Good Good
#> 13 Good Bad Good
#> f_residual_td_on_sa f_residual_td_on_i oos_mean oos_mse q q_m2 m7
#> 1 Bad Uncertain Good Bad Bad Good Good
#> 2 Good Good Good Bad Bad Good Good
#> 3 Severe Bad Good Uncertain Bad Bad Good
#> 4 Severe Severe Good Good Bad Good Good
#> 5 Good Good Good Good Bad Bad Good
#> 6 Bad Bad Good Good Good Good Good
#> 7 Severe Severe Good Good Bad Bad Good
#> 8 Severe Severe Good Good Good Bad Good
#> 9 Severe Severe Good Good Bad Bad Bad
#> 10 Severe Severe Good Uncertain Bad Bad Good
#> 11 Uncertain Uncertain Good Bad Bad Good Good
#> 12 Severe Severe Good Good Bad Bad Good
#> 13 Severe Severe Good Uncertain Good Good Good
#> pct_outliers
#> 1 Uncertain
#> 2 Bad
#> 3 Good
#> 4 Good
#> 5 Good
#> 6 Good
#> 7 Good
#> 8 Good
#> 9 Good
#> 10 Good
#> 11 Uncertain
#> 12 Good
#> 13 Good
# Or:
QR[["modalities"]]
#> series residuals_homoskedasticity residuals_skewness residuals_kurtosis
#> 1 RF0610 Uncertain Good Good
#> 2 RF0620 Good Bad Bad
#> 3 RF0811 Uncertain Bad Bad
#> 4 RF0812 Bad Good Uncertain
#> 5 RF0893 Good Good Good
#> 6 RF0899 Good Good Good
#> 7 RF1011 Good Good Good
#> 8 RF1012 Good Good Good
#> 9 RF1013 Bad Bad Bad
#> 10 RF1020 Bad Good Uncertain
#> 11 RF1031 Bad Uncertain Bad
#> 12 RF1032 Good Good Good
#> 13 RF1039 Bad Uncertain Bad
#> residuals_normality residuals_independency qs_residual_sa_on_sa
#> 1 Good Good Good
#> 2 Bad Good Good
#> 3 Bad Bad Good
#> 4 Good Bad Good
#> 5 Good Uncertain Good
#> 6 Good Bad Good
#> 7 Good Bad Severe
#> 8 Good Bad Severe
#> 9 Bad Bad Bad
#> 10 Uncertain Bad Severe
#> 11 Bad Bad Bad
#> 12 Good Bad Good
#> 13 Bad Bad Severe
#> f_residual_sa_on_sa qs_residual_sa_on_i f_residual_sa_on_i
#> 1 Good Good Good
#> 2 Good Good Good
#> 3 Good Good Good
#> 4 Good Good Good
#> 5 Good Good Good
#> 6 Good Good Good
#> 7 Good Severe Good
#> 8 Good Severe Good
#> 9 Good Bad Good
#> 10 Good Bad Good
#> 11 Good Uncertain Good
#> 12 Good Good Good
#> 13 Good Bad Good
#> f_residual_td_on_sa f_residual_td_on_i oos_mean oos_mse q q_m2 m7
#> 1 Bad Uncertain Good Bad Bad Good Good
#> 2 Good Good Good Bad Bad Good Good
#> 3 Severe Bad Good Uncertain Bad Bad Good
#> 4 Severe Severe Good Good Bad Good Good
#> 5 Good Good Good Good Bad Bad Good
#> 6 Bad Bad Good Good Good Good Good
#> 7 Severe Severe Good Good Bad Bad Good
#> 8 Severe Severe Good Good Good Bad Good
#> 9 Severe Severe Good Good Bad Bad Bad
#> 10 Severe Severe Good Uncertain Bad Bad Good
#> 11 Uncertain Uncertain Good Bad Bad Good Good
#> 12 Severe Severe Good Good Bad Bad Good
#> 13 Severe Severe Good Uncertain Good Good Good
#> pct_outliers
#> 1 Uncertain
#> 2 Bad
#> 3 Good
#> 4 Good
#> 5 Good
#> 6 Good
#> 7 Good
#> 8 Good
#> 9 Good
#> 10 Good
#> 11 Uncertain
#> 12 Good
#> 13 Good